Scicos_new: Wrong value for input argument #1: unable to set "graphics"

What is this type of error? Does anyone has idea ?

function [x, y, typ] = Kalman_Filter_IF(job, arg1, arg2)
    x = [];
    y = [];
    typ = [];
    getInputFromSim = 1;
    // getinput
    State = [];
    Covariance = [];
    
    
    select job
        // Initialize with mask parameters if any
    case "plot" then
        standard_draw(arg1);
    case "getinputs" then
        [x, y, typ] = standard_inputs(arg1);

    case "getoutputs" then
        [x, y, typ] = standard_outputs(arg1);

    case "getorigin" then
        [x, y] = standard_origin(arg1);

        case 'set'
            x = arg1;
            graphics = arg1.graphics;
            exprs = graphics.exprs;
            model = arg1.model;
            
        if getInputFromSim == 1 then
                exec('macros/Kalman_Filter_Utils.sci', -1); // Not sure about this line in MATLAB, comment it if not necessary
                title = 'Set Parameters';
                labels = {'Initial state [x_dot(velocity), x(position)] which is position in ECEF frame and velocity', ...
                          'Covariance which gives the uncertainty at position and velocity'};  // Changed 'Stiffness' to 'Covariance'
                // In future we can add {'Accelerations', 'Orientations which is obation altitude control system'}
                types = {'mat', [2 2], 'mat', [2 2]};  // Changed 'vec' to 'mat' for Covariance
                endLoop = %f;
            
                // Create a dialog for getting user inputs
            while ~endLoop do
                    // Initialize dialog for parameters and initial state
                    [ok, State, Covariance, exprs] = scicos_getvalue('Set Properties and State', labels, types, exprs);
                    errMsg = [];

                    // Check return set conditions of the initial state as per meetings
                    if ~ok then
                        // depends on what type of data we are having
                        if condition1 // first condition of position and velocity
                            errMsg = [];
                        end 

                        if condition2 // second condition of velocity
                            errMsg = [];
                        end
                    end 

                    if isempty(errMsg)
                        // from here start working
                    end

                    // Check parameters
                    // You can add additional checks for input parameters here if needed

                    // Accept inputs and save them
                    if ok
                        // Concatenate the covariance matrix to the state vector
                        model.state = [State; Covariance(:)];  // Use the concatenation operator ":" for the matrix
                        graphics.exprs = exprs;
                        x.graphics = graphics;
                        x.model = model;
                        break;
                    else
                        disp('Failed to update block io');
                    end
                end
            end

        // Define block properties
        case 'define'
            // Create object
            model = scicos_model();

            // Provide name and type
            model.sim = {'Kalman_Filter_sim', 5};

            // Define inputs and outputs
            // One input with a variable-size "double" element
            model.in = 1; // it's only z,
            // it has at first position occupies which means at first position is 1, 1 indicates that only one input value, see wriiten notes to understand
            model.in2 = 1;   // the second dimension of I/P whcih means all the data enter has one dimension data for example just z axis data while if it was 2 than we have input data of x and y if there is 3 then x,y,z so on. each column represents specific data
            model.intyp = 1;

            // One output with a single "double" element
            model.out = [2; 2];
            model.out2 = [1; 2];
            model.outtyp = 1;

            // Set initial state
            model.state = [State; Covariance(:)];   // Use the matrix concatenation operator ":" to convert matrix to column vector

            // Set default parameter
            model.rpar = Covariance(:);  // Use the covariance matrix as a parameter

            // Define block properties
            model.blocktype = 'c';
            model.dep_ut = [%t,%f]; // what does %t and %f indicates? true and false

            // Set block properties
            exprs = {'[0.0; 0.0]', '[1.0]'}; // How do we get this value?
            x = standard_define([4 4], model, exprs);
            x.graphics.style = {'blockWithLabel;displayedLabel=Kalman_Filter'};
            // other cases other than set or define sections
    end
endfunction

I am trying to developing Xcos block